ACIDITY, SOLUBILITY AND CHEMICAL UTILIZATION OF LOCAL LEUCAENA LEUCOCEPHALA STEM BARK

Rafidah Salim, Jahimin Asik, Mohd Sani Sarjadi

Abstract


Acidity, solubility and chemical properties of eleven years old of Leucaena leucocephala stem bark were investigated.
The bark was peeled from the stem of tree and gentle washed in tap water to remove dirt before air-dried in the
laboratory at room temperature (24 + 3°C) for 2-3 weeks. The bark was minced into coarse powder and grind to pass
BS 250μm mesh sieve. After air-dried for several days, the samples were conducted to chemical analyses (ash content
and pH value; solubility in 1%NaOH, hot and cold water solubility; extractive, cellulose and lignin content) based on
ASTM standard methods. The results show that L. leucocephala stem bark considered as least acidic (pH value 6.04) and
high ash content (15.76%). The solubility of bark components was higher in 1% NaOH (41.36%) compared to hot water
(14.45%) and cold water (11.06%). Holocellulose and hemicellulose was 132.85% and 103.66%, respectively. Lignin
was the major composition in L. leucocephala stem bark (38.4%) followed by cellulose (29.19%) and extractive (8.39%).
This study indicated that the bark of L. leucocephala had less acidity. The high solubility of the bark potential as a
carbohydrate resource, while the chemical component of the bark might influence rapid combustion during pyrolysis.


Full Text:

PDF

References


Feng, S., Cheng, S., Yuan, Z., Leitch, M., & Xu, C. (Charles) 2013. Valorization of bark for chemicals and materials: A review. Renewable and Sustainable Energy Reviews, 26, 560-578. https://doi.org/10.1016/j.rser.2013.06.024

Hon, DNS, Shiraishi, N. 2001. Wood and cellulosic chemistry. Chemistry of bark, 243-74.

Chow, P., Nakayama, FS., Blahnik, B., Younnngquist, JA., & Coffelt, TA. 2008. Chemical constituents and physical properties of guayule wood and bark. Industrial Crops and Products, 28, 303–8.

Pappa, A., Tzamtzis, N., Statheropoulos, M., & Fasseas, C. 2000. The pyrolytic behaviour of Pinus halepensis needles observed by transmission light microscopy and stereoscopy. Journal of Analytical and Applied Pyrolysis, 55:195–202.

Usta, M. & Kara, Z. 1997. The chemical composition of wood and bark of Cedrus libani A. Holz als Roh und Werkstoff, 55:268.

Makino, R., Ohara, S., & Hashida, K. 2009. Efficient extraction of polyphenolics from the bark of tropical tree efficient extraction of polyphenolics from the bark of tropical tree species. Journal of Tropical Forest Science, 21(211), 45–49. Retrieved from http://www.jstor.org/stable/23616561%0Ahttp://about.jstor.org/terms

Vazquez, G., Gonzalez-Alvarez, G., Garcia, AI., Freire, MS. & Antorrena, G. 2007. Adsorption of phenol on formaldehyde pretreated Pinus pinaster bark: Equilibrium and kinetics. Bioresource Technology 2007; 98:1535–40.

Dalahmeh, SS., Pell, M., Vinneras, B., Hylander, LD., Oborn, I. & Jonsson, H. 2012. Efficiency of bark, activated charcoal, foam and sand filters in reducing pollutants in gray water. Water, Air, and Soil Pollution 2012;223(7):3657–71.

Eberhardt, TL. & Reed, KG. 2006. Strategies for improving the performance of plywood adhesive mix fillers from southern yellow pine bark. Forest Products Journal 2006;56(10):64–8.

Klasnja, B., Kopitovic, S. & Orlovic, S. 2002. Wood and bark of some poplar and willow clones as fuel wood. Biomass and Bioenergy 2002;23:427–32.

Takano, T., Murakami, T., Kamitakahara, H. & Nakatsubo, F. 2008. Formaldehyde adsorption by karamatsu (Larix leptolepis) bark. Journal of Wood Science 2008;54:332–6.

Ku, CS., Jang, JP. & Mun, SP. 2007. Exploitation of polyphenol rich pine barks for potent antioxidant activity. Journal of Wood Science, 53, 524–8.

Kim, KH., Tucker, M. & Nguyen, Q. 2005. Conversion of bark rich biomass mixture into fermentable sugar by two stage dilute acid-catalyzed hydrolysis. Bioresource Technology 2005;96:1249–55.

Torget, R., Himme, ME. & Grohmann, K. 1991. Dilute sulphuric acid pretreatment of hardwood bark. Bioresource Technology, 35,239–46.

Fengel, D. & Wegener, G., 1984. Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter, Berlin.

Pereira, H., Grac¸ a, J., Rodrigues, J.C., 2003. Wood chemistry in relation to quality. In: Barnett, J.R., Jeronimidis, G. (Eds.), Wood Quality and Its Biological Basis, vol. 3. CRC Press, Blackwell Publishing, Oxford, 53–83.

Steindor, K., Palowski, B., Góras, P., & Nadgórska-Socha, A. 2011. Assessment of bark reaction of select tree species as an indicator of acid gaseous pollution. Polish Journal of Environmental Studies, 20(3), 619–622.

ASTM D1110. 2001. Standard Test Method for Water Solubility of Wood D1110-84 (Reapproved 2001).

ASTM D1109. 2001. Standard Test Method for 1% Sodium Hydroxide Solubility of Wood D1109-84 (Reapproved 2001).

ASTM D110. 2001. Standard Test Method for Ash in Wood D110-84 (Reapproved 2001).

ASTM D1105. 2001. Standard Test Method for Extractive-Free in Wood D1105-96 (Reapproved 2001).

ASTM D1106. 2001. Standard Test Method for Acid-Insoluble Lignin of Wood D1106-96 (Reapproved 2001).

Ahmad, Z., Wee, L. S., & Fauzi, M. A. 2011. Mechanical properties of wood-wool cement composite board manufactured using selected Malaysian fast grown timber species. ASM Science Journal, 5(1), 27–35.

Babatunde, A., Olufemi, B., Fuwape, J.A. & Badejo, S.O. 2008. Effect of wood density on bending strength and dimensional movement of flake boards from Gmelina arborea and Leuceana leucocephala, in Proceedings 11th Int. Organic-bonded Fiber Composite Conference, Madrid, Spain

Xavier, D., Emmanuel, F., Philippe, G., Eric, M. 2012. Spruce bark hydrolysis to optimize phenolic content. Cellulose Chemistry and Technology, 46 (9-10), 541-550.

Poikolainen, J. 2004. Mosses, epiphytic lichens and tree bark as biomonitors for air pollutants – specifically for heavy metals in regional surveys. Oulu University Press: Oulu, pp. 64, 2004.

Grodzinska, K. 1971. Acidification of tree bark as a measure of air pollution in Southern Poland. BULL. ACAD, SC. POL., CL. 2, 19:189-195.

Santamaría, J. M., & Martín, A. 1997. Tree bark as a bioindicator of air pollution in Navarra, Spain. Water, Air, and Soil Pollution, 98(3–4), 381–387. https://doi.org/10.1007/BF02047045.

Xing, C., Deng, J., Zhang, S. Y., Rield, B., & Cloutier, A. 2006. Impact of bark content on the properties of medium density fiberboard (MDF) in four species grown in eastern Canada, 56(3), 64–69.

He, G. & Riedl, B. 2004. Curing kinetics of phenol formaldehyde resin and wood-resin interactions in the presence of wood substrates. Wood Science Technology 38(1):69–81.

Ngueho Yemele, M. C., Koubaa, A., Cloutier, A., Soulounganga, P., Stevanovic, T., & Wolcott, M. P. 2013. Effects of hot water treatment of raw bark, coupling agent, and lubricants on properties of bark / HDPE composites. Industrial Crops & Products, 42, 50- 56. https://doi.org/10.1016/j.indcrop.2012.05.012

Hoong, Y., Paridah, T., Feng, Y., Jalaluddin, H., & Chuah, L. A. 2011. International Journal of Adhesion & Adhesives A new source of natural adhesive: Acacia mangium bark extracts co-polymerized with phenol-formaldehyde (PF) for bonding Mempisang (Annonaceae spp.) veneers. International Journal of Adhesion and Adhesives, 31(3), 164-167. https://doi.org/10.1016/j.ijadhadh.2010.12.002

Siddhuraju, P., Mohan, P. S., & Becker, K. 2002. Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): A preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp, 79, 61–67.

Bianchi, S., Kroslakova, I., Janzon, R., Mayer, I., Saake, B., & Pichelin, F. 2015. Phytochemistry Characterization of condensed tannins and carbohydrates in hot water bark extracts of European softwood species, 120, 53–61. https://doi.org/10.1016/j.phytochem.2015.10.006

Ku, C. S., & Mun, S. P. 2007. Characterization of proanthocyanidin in hot water extract isolated from Pinus radiata bark. Wood Science and Technology, 41(3), 235–247.

Mun, S.P. & K,u, C.S. 2006. Characterization of low molecular weight polyphenols from pine (Pinus radiata) bark. Food Science Biotechnology 15:424–430.

De Meijer, EPM. and van der Werf, H.M.G., 1994. Evaluation of current methods to estimate pulp yield of hemp. Industrial Crops & Products, 2: 11 l-120.

Geng, X., Zhang, S. Y., & Deng, J. 2006. Alkaline Treatment of Black Spruce Bark for the Manufacture of Binderless Fiberboard Alkaline Treatment of Black Spruce Bark, 3813. https://doi.org/10.1080/02773810601076857

Zanuttini, M., Citroni, M., Martı´nez, M.J. & Marzocchi, V. 1998. Chemimechanical pulping of poplar wood. Alkaline wood pretreatment at low temperature. Holzforschung 1998, 52 (4), 405–409.

Ito, T. & Tsuchiya, H. 1976. Cold soda chemi-ground wood pulp and hot sulfite chemi- ground wood pulp in the newsprint mill: an empirical comparison. Pulp and Paper Canada 1976, 77 (3), 37–43.

Feng, S., Yuan, Z., Leitch, M., & Charles, C. 2014. Hydrothermal liquefaction of barks into bio-crude – Effects of species and ash content / composition. Fuel, 116, 214–220. https://doi.org/10.1016/j.fuel.2013.07.096

Werkelin, J., Skrifvars, B.-J., & Hupa, M. 2005. Ash-forming elements in four Scandinavian wood species. Part 1: Summer harvest, 29, 451–466. https://doi.org/10.1016/j.biombioe.2005.06.005

Toscano, G., Riva, G., Pedretti, E. F., Corinaldesi, F., Mengarelli, C., & Duca, D. 2013. Investigation on wood pellet quality and relationship between ash content and the most important chemical elements. Biomass and Bioenergy, 56(0), 317–322. https://doi.org/10.1016/j.biombioe.2013.05.012

Demirbas, A. 2002. Relationships Between Heating Value and Lignin, Moisture, Ash and Extractive Contents of Biomass Fuels, 20(1), 105–111.

Ngueho Yemele, M.C., Koubaa, A., Niokhor Diouf, P., Blanchet, P., Cloutier, A., Stevanovic, T. 2008. Effects of hot-water treatment of black spruce and trembling aspen bark raw material on the physical and mechanical properties of bark particleboard. Wood and Fiber Science 40 (3), 339–351.

Krutul, D., Zielenkiewicz, T., Zawadzki, J., Radomski, A., Antczak, A., & Drozdzek, M. 2014. Influence of urban environment originated heavy metal pollution on the extractives and mineral substances content in bark and wood of Oak (Quercus robur L.), (January). Wood Research 59 (1), 177-190.

Gierlinger, N., Jacques, D., Schwanninger, M., Wimmer, R., & Paques, L.E. 2004. Heartwood extractives and lignin content of different Larch species (Larix sp.) and relationships to brown rot decay resistance. Trees (Berl) 18(2):230-236.

Sairanen, P. 1982. Properties and usages of Larch in the mechanical forest industry in Soviet Union. Mets¨antutkimuslaitoksen tiedonantoja, 72 [In Finnish].

Serapiglia, M. J., Cameron, K. D., Stipanovic, A. J., & Smart, L. B. 2009. Analysis of Biomass Composition Using High-Resolution Thermogravimetric Analysis and Percent Bark Content for the Selection of Shrub Willow Bioenergy Crop Varieties, 1–9. https://doi.org/10.1007/s12155-008-9028-4

Duret, X., Fredon, E., Masson, E., Desharnais, L., & Gerardin, P. 2013. Optimization of Acid Pretreatment in order to Increase the Phenolic Content of Picea abies Bark by Surface Response Methodology, (November).

https://doi.org/10.15376/biores.8.1.1258-1273

Girio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., and Bogel Lukasik, R. 2010. Hemicellulose for a fuel ethanol: A review, Bioresource Technology 101, 4775- 4800.

Matsushita, Y., Yamauchi, K., Takabe, K., Awan, T., Yoshinaga, A., Kato, M., Kobayashi, T., Asada, T., Furujyo, A., and Fukushima, K. 2010. Enzymatic saccharification of Eucalyptus bark using hydrothermal pretreatment with carbon dioxide, Bioresource Technology 101, 4936-4939.

Mehrotra, R., Singh, P., and Kandpal, H. 2010. Near infrared spectroscopic investigation of the thermal degradation of wood, Thermochimica Acta 507-508, 60-65.

Evelyn, S. R., Maihs, E. A., and Roux, D. G. 1960. The oxidative condensation of (+) catechin, Biochemical Journal 76, 23-27.

Krogell, J., Holmbom, B., Pranovich, A., Hemming, J., and Willfor, S. 2011. Extraction and chemical characterization of Norway spruce inner and outer bark, Nordic Pulp and Paper Research Journal, In press.

'Dwyer & Margaret, H. 1926. The hemicelluloses. Part IV. The hemicelluloses of beech wood. Biochemistry Journal, 20: 656-664.

Candlin, E. J., and Schryver, S. B. 1928. Investigations of the cell wall substance of plants with special reference to the chemical changes taking place during lignification. Proc. Roy, Soc. London B 103: 365-376. 1928.

Lingood, F.V. 1930. The decarboxylation of pectin. Biochemistry Journal 24: 262-265. 1930.

Norman, A. G., and Norris, F. W. 1930. Studies on pectin. IV. The oxidation of pectin by Fenton's reagent and its bearing on the genesis of the hemicelluloses. Biochemistry Journal 24: 402-409. 1930.

Phillips, M. and Goss, M. J. 1935. Composition of the leaves and stalks of barley at successive stages of growth with special reference to the formation of lignin. Journal of Agriculture Residues 51: 301-319.

Liu, L., Cao, J., Huang, J., Cai, Y., & Yao, J. 2010. Extraction of pectin with different degrees of esterification from mulberry branch bark. Bioresource Technology, 101(9), 3268–3273. https://doi.org/10.1016/j.biortech.2009.12.062

Kerr, T., and Bailey, I. W. 1934. The cambium and its derivative tissues. X. Structure, optical properties, and chemical composition of the so-called middle lamella. Journal of Arnold Arboretum 15: 327-349.

de Souze Lima, M. M., & Borsali, R. 2004. Rodlike cellulose microcrystals: Structure, properties, and applications. Macromolecular Rapid Communications, 25, 771–787.

Stephen, A. M. 1995. Food polysaccharides and their applications. New York: Marcel Dekker.

Whistler, R. L., & BeMiller, J. N. 1997. Cellulosics. In Carbohydrate chemistry for food scientists (Vol. 1, pp. 155). Minnesota: American Association of Cereal Chemists Inc.

Sassner, P., Galbe, M., & Zacchi, G. 2008. Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass and Bioenergy, 32, 422–430.

Sun, Y., & Cheng, J. Y. 2002. Hydrolysis of lignocellulosic materials for ethanol production:

i. A review. Bioresource Technology, 83, 1–11.

Li, R., Fei, J., Cai, Y., Li, Y., Feng, J., & Yao, J. 2009. Cellulose whiskers extracted from mulberry : A novel biomass production. Carbohydrate Polymers, 76(1), 94–99. https://doi.org/10.1016/j.carbpol.2008.09.034

Eriksson, K. E., and Wood, T. M. 1985. Biodegradation of cellulose. Pages 469-502 in: Biosynthesis and Biodegradation of Wood Components. T. Higuchi, ed. Academic Press, New York. 587.

Allison, F. E. 1973. Maintenance of soil organic matter. Pages 417-444 in: Soil Organic Matter and its Role in Crop Production. Elsevier Scientific Publishing Company, New York. 637.

Ladd, J. N. 1985. Soil enzymes. Pages 175-221 in: Soil Organic Matter and Biological Activity. D. Vaughan and R. E. Malcom, eds. Martinus Nijhoff/ Dr W. Junk Publishers, Dordrecht, the Netherlands. 469.

Chung, Y. R., Hoitink, H. A. J., Dick, W. A., & Herr, L. J. 1988. Effects of Organic Matter Decomposition Level and Cellulose Amendment on the Inoculum Potential of Rhizoctonia solani in Hardwood Bark Media, 836–840.

Jelonek, T., Pazdrowski, W., Jelonek, A., GZYL, J., Tomczak, A., & Wieczorek, F. 2009. The relationship between the form of dead bark and lignin content in Scots The relationship between the form of dead bark and lignin content in Scots pine (Pinus sylvestris L .). Turkish Journal of Agriculture and Forestry, (August 2016). https://doi.org/10.3906/tar-0903-42

Marques, A. V, Pereira, H., Rodrigues, J., Meier, D., & Faix, O. 2006. Isolation and comparative characterization of a Bjorkman from the saponified cork of Douglas-fir bark. Journal of Analytical and Applied Pyrolysis, 77, 169–176. https://doi.org/10.1016/j.jaap.2006.03.003

Sarkanen, K.V., H.L. Hergert, in: K.V. Sarkanen, C.H. Ludwig 1968. (Eds.), Lignins-Occurence, Formation, Structure and Reactions, Wiley Inter-science, New York, 1971, 43.

Freudenberg, K., in: K. Freudenberg, A.C. Neish (Eds.), The Constitution and Biosynthesis of Lignin, Springer-Verlag, Berlin, 47.

Ralph, J., Lundquist, K., Brunow, G., Lu, F., Kim, H., P.F. Schatz, P.F. Marita, J.M., Hatfield, R.D., Ralph, S.A., Christensen, J.H. & Boerjan, W. 2004. Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochemistry Review 3(1-2):29-60.

Boerjan, W., Ralph, J. & Baucher, M. 2003. Lignin Biosynthesis. Annual Review of Plant Biology 54: 519-546.

Sederoff, R. R., Mackay, J. J., Ralph, J., & Hatfield, R. D. 1999. Unexpected variation in lignin, Current Opinion in Plant Biology 1999, 2:145–152.

Hergert, L.H. & Kurth, E.F. 1952. Technical Association of the Pulp and Paper Industry (TAPPI) 35: 59.

Marques, A. V. & Pereira, H. 1987. On the determination of suberin and other structuralcomponents in cork from Quercus suber L. Anais do Instituto Superior de Agronomia (Lisboa) 42: 321.

Gani, A., & Naruse, I. 2007. Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renewable Energy, 32(4), 649–661. https://doi.org/10.1016/j.renene.2006.02.017.

Fradinho, D. M., Neto, C. P., Evtuguin, D., Jorge, F. C., Irle, M. A., Gil, M. H., & Jesus, J. P. 2002. Chemical characterisation of bark and of alkaline bark extracts from maritime pine grown in Portugal. Industrial Crops and Products, 16(1), 23–32.

Duret, X., & Masson, E. 2013. Optimization of Acid Pretreatment in order to Increase the Phenolic Content of Picea abies Bark by Surface Response Methodology, (July 2014). https://doi.org/10.15376/biores.8.1.1258-1273.


Refbacks

  • There are currently no refbacks.

Copyright © 2020 Plemillan Publishing Corporation. All rights reserved.